Session

Friday, June 23, 2017 - 09:00 to 18:45
Predicting Comorbidities using Resampling and Dynamic Bayesian Networks with Latent Variables
Abstract: 
Comorbidities such as hypertension and lipid metabolism are often associated in diseases such as diabetes, and the early prediction of these is of great value when trying to manage progression. This is the start of a project to model multiple comorbidities in diabetes using dynamic Bayesian networks with latent variables in order to stratify patient cohorts. In this paper, we demonstrate some initial results on a dataset where the class imbalance problem poses an issue due to the rare occurrence of different individual comorbidities on a visit-by-visit basis. This is dealt with using a bootstrap technique that has been specifically designed for longitudinal data where the occurrence of the positive class occurs far less than the negative.
Leila Yousefi's picture
Leila Yousefi
Lucia Saachi's picture
Lucia Saachi
Riccardo Bellazzi's picture
Riccardo Bellazzi
Luca Chiovato's picture
Luca Chiovato
Allan Tucker's picture
Allan Tucker
Brunel University London (UK)