Keynote Speech

Leontios Hadjileontiadis's picture
Leontios Hadjileontiadis
Aristotle University of Thessaloniki (GR)
Terry Poulton's picture
Terry Poulton
Saint George's University of London (UK)
Conference room
Session time
Thursday, June 22, 2017 - 17:30 to 18:15

The proposed lecture will present advanced achievements in the field of affective computing towards more enhanced human-computer-interaction interfaces, presenting advanced signal processing techniques and implementations applied to Electroencephalogram (EEG) recordings. In particular, the way emotions are 'reflected' in our brain signals and the way actions (both in explicit and implicit way, e.g., gestures in music) are combined with internal representations in our brain (involving mirror neuron system activation), will be presented and discussed. Moreover, potential implementations of the findings in the field of human assistive technology will be shown, including innovative ways of pain management, bullying identification, and Parkinson’s and Alzheimer's community support. 

Keynote Speech

Tony Solomonides's picture
Tony Solomonides
NorthShore University HealthSystem (USA)
Allan Tucker's picture
Allan Tucker
Brunel University London (UK)
Conference room
Session time
Thursday, June 22, 2017 - 18:15 to 19:00

There are many diagnosis and treatment guidelines for certain conditions, but there are others, especially undifferentiated complaints, the problem of diagnosis is wide open. A team from NorthShore, Case Western Reserve, Carnegie Mellon, Weill Cornell, and Johns Hopkins is working on a joint project to study the diagnostic process in the case of several undifferentiated complaints, including (a) Abdominal Pain, and (b) Dizziness. There are many different approaches to the problem of discovery of good diagnostic pathways from the electronic health record. I will discuss several approaches and show some results from each. The problem of finding optimal pathways -- i.e. courses of action that would minimize time to diagnosis without an unacceptable risk of diagnostic error -- remains elusive, so it would give us something to discuss further.

Keynote Speech

Nikos Chrisochoides's picture
Nikos Chrisochoides
Old Dominion University Norfolk Virginia (USA)
Anastasios Siountas's picture
Anastasios Siountas
Aristotle University of Thessaloniki (GR)
Conference room
Session time
Friday, June 23, 2017 - 12:30 to 13:15

In image-guided neurosurgery, co-registered preoperative anatomical, functional, and diffusion tensor imaging can be used to facilitate a maximally safe resection of brain tumors in eloquent areas of the brain. However, because the brain can deform significantly during surgery, particularly in the presence of tumor resection, non-rigid registration of the preoperative image data to the patient is required. This talk reports the results (using clinical data) of a comparison of the accuracy and performance among four open-source non-rigid registration methods for handling brain deformation in the presence of tumor resection, including a new adaptive method that automatically removes mesh elements in the area of the resected tumor, thereby automatically handling deformation in the presence of resection.


In this talk data from 30 glioma surgeries performed at two different hospitals, many of which involved the resection of significant tumor volumes. Three measures aid in assessing the accuracy of the registration methods: (i) visual assessment, (ii) a Hausdorff Distance-based metric, and (iii) a landmark-based approach using anatomical points identified by a neurosurgeon. Performance analysis showed that the adaptive method could be applied, on average, in less than two minutes, achieving desirable speed for use in a clinical setting and significantly better than other readily-available registration methods at modeling deformation in the presence of resection. Both the registration accuracy and performance proved sufficient to be of clinical value in the operating room.


Given time availability a brief description of related real-time Image-to-Mesh conversion technologies at developed CRTC to facility adaptive method will be presented.


Keynote Speech

Vangelis Karkaletsis's picture
Vangelis Karkaletsis
NCSR Demokritos (GR)
Dimitrios Koutsouris's picture
Dimitrios Koutsouris
National Technical University of Athens (GR)
Conference room
Session time
Friday, June 23, 2017 - 15:30 to 16:15

Unobtrusive clinical monitoring with robots in AAL environments: the RADIO ecosystem
Technical advancements in ICT, including robotics, bring new opportunities to improve the quality of life of the elderly, their family and care-givers, and to mimimize the invonvenience and cost of clinical monitoring. Automatically detecting early symptoms of cognitive impairment, frailty and social exclusion would extend people's ability to safely and comportably live independently. 
The ecosystem proposed by the H2020 RADIO project ( aims to integrate multiple RADIO Home deployments, medical institutions, and informal care givers into an information management and sharing Ecosystem that is by design scalable, secure and privacy-preserving. RADIO Home is, effectively, a robot operating inside a Smart Home. In this environment, Smart Home and robot functionalities accommodate the user’s needs, while assuming interaction with the users as an opportunity for clinical monitoring. In this manner, clinical monitoring sensors do not need to be masked but become an obvious, yet discrete and accepted, part of the user’s daily life. Moreover, a robot has a dynamic presence in the user’s space, which can increase the feeling of safety by being in the right place at the right time. 
The talk will present the project outcomes so far, focusing on the clinical and unobtrusiveness requirements which guided the design of the RADIO architecture, and on the architectural and methodological work to ensure that multiple RADIO Homes and care-givers can be interconnected in a scalable, secure and privacy-preserving ecosystem. It will also present the outcomes of real-environment piloting performed in the premises of our clinical partners, to evaluate the usability of the system, its fitness for its medical purpose and the compliance with unobtrusiveness.

Keynote Speech

Luis Kun's picture
Luis Kun
Editor in Chief - Springer (USA)
Conference room
Session time
Saturday, June 24, 2017 - 12:30 to 13:15

Most medical treatments are designed for a specific disease and for the “average patient".  This "one-size-fits-all-approach," may be successful for some patients but not for others. Precision medicine, sometimes known as "personalized medicine" is an innovative approach to disease prevention and treatment that takes into account differences in people’s genes, environments and lifestyles.  In January 2015, President Obama launched the Precision Medicine Initiative (PMI), a bold new research effort to revolutionize how we improve health and treat disease, empowering health care providers to tailor treatment and prevention strategies to individuals’ unique characteristics.  Advances in precision medicine have already led to powerful new discoveries and several new FDA-approved treatments that are tailored to specific characteristics of individuals, such as a person’s genetic makeup, or the genetic profile of an individual’s tumor. Patients with a variety of cancers routinely undergo molecular testing as part of patient care, enabling physicians to select treatments that improve chances of survival and reduce exposure to adverse effects.  The PMI seeks to identify genetically-based drivers of disease in order to develop new, more effective treatments.  There is a component in this equation that relates to Public Health that is very seldom discussed or incorporated into an individual’s health record: Geomedicine.  This presentation will discuss how this field will change the future model of Healthcare.